accumulation risk - significado y definición. Qué es accumulation risk
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es accumulation risk - definición

Species accumulation curve; Species accumulation curves

Systematic risk         
VULNERABILITY TO SIGNIFICANT EVENTS WHICH AFFECT AGGREGATE OUTCOMES SUCH AS BROAD MARKET RETURNS, TOTAL ECONOMY-WIDE RESOURCE HOLDINGS, OR AGGREGATE INCOME
Aggregate risk; Unsystematic risk
In finance and economics, systematic risk (in economics often called aggregate risk or undiversifiable risk) is vulnerability to events which affect aggregate outcomes such as broad market returns, total economy-wide resource holdings, or aggregate income. In many contexts, events like earthquakes, epidemics and major weather catastrophes pose aggregate risks that affect not only the distribution but also the total amount of resources.
Risk equalization         
LEGAL TERM
Risk equalisation; Risk profiles
Risk equalization is a way of equalizing the risk profiles of insurance members to avoid loading premiums on the insured to some predetermined extent.
Risk aversion         
PREFERENCE AGAINST RISK, A COMMON HUMAN BEHAVIOR OF ATTEMPTING TO LOWER UNCERTAINTY AND AVOID RISK
Risk Aversion; Risk-aversion; Absolute risk aversion; Arrow-Pratt measure; Coefficient of absolute risk aversion; Coefficient of relative risk aversion; Decreasing absolute risk aversion; Increasing absolute risk aversion; Constant absolute risk aversion; Increasing relative risk aversion; Decreasing relative risk aversion; Constant Relative Risk Aversion; Risk averse; CARA utility; Risk tolerance; Risk tolerant; Risk-tolerant; Risk-averse; Log utility; Risk attitude; Co-efficient of absolute risk aversion; Risk Tolerance; Relative risk aversion; Risk aversion scale; Risk aversion (Economics); Risk aversion (economics)
In economics and finance, risk aversion is the tendency of people to prefer outcomes with low uncertainty to those outcomes with high uncertainty, even if the average outcome of the latter is equal to or higher in monetary value than the more certain outcome. Risk aversion explains the inclination to agree to a situation with a more predictable, but possibly lower payoff, rather than another situation with a highly unpredictable, but possibly higher payoff.

Wikipedia

Species discovery curve

In ecology, the species discovery curve (also known as a species accumulation curve or collector's curve) is a graph recording the cumulative number of species of living things recorded in a particular environment as a function of the cumulative effort expended searching for them (usually measured in person-hours). It is related to, but not identical with, the species-area curve.

The species discovery curve will necessarily be increasing, and will normally be negatively accelerated (that is, its rate of increase will slow down). Plotting the curve gives a way of estimating the number of additional species that will be discovered with further effort. This is usually done by fitting some kind of functional form to the curve, either by eye or by using non-linear regression techniques. Commonly used functional forms include the logarithmic function and the negative exponential function. The advantage of the negative exponential function is that it tends to an asymptote which equals the number of species that would be discovered if infinite effort is expended. However, some theoretical approaches imply that the logarithmic curve may be more appropriate, implying that though species discovery will slow down with increasing effort, it will never entirely cease, so there is no asymptote, and if infinite effort was expended, an infinite number of species would be discovered. An example in which one would not expect the function to asymptote is in the study of genetic sequences where new mutations and sequencing errors may lead to infinite variants.

The first theoretical investigation of the species-discovery process was in a classic paper by Fisher, Corbet and Williams (1943), which was based on a large collection of butterflies made in Malaya. Theoretical statistical work on the problem continues, see for example the recent paper by Chao and Shen (2004). The theory is linked to that of Zipf's law.

The same approach is used in many other fields. For example, in ethology, it can be applied to the number of distinct fixed action patterns that will be discovered as a function of cumulative effort studying the behaviour of a species of animal; in molecular genetics it is now being applied to the number of distinct genes that are discovered; and in literary studies, it can be used to estimate the total vocabulary of a writer from the given sample of his or her recorded works (see Efron & Thisted, 1976).